

Metropolitan Solutions 2016

Savvas Verdis / Katrin Mueller

Planning with technologies

Unrestricted © Siemens AG 2016 All rights reserved.

Answers for infrastructure and cities.

Siemens Sustainable Cities Initiative

Why the Crystal?

- A sustainable cities initiative by Siemens.
 Supporting long term cooperation with cities for infrastructure solutions
- A platform for global collaboration amongst key players in urban sustainability
- A centre to discuss and learn about the challenges cities are facing and possible solutions to reduce their environmental impact.
- Home for thought leadership on urban sustainability providing experts to exchange ideas.

Case studies

How do the same technologies perform differently from city to city?

Bus Rapid Transit EMBARQ-Study

Evolution (years)

Source: http://thecityfixbrasil.com/files/2013/12/EMB13_HSBC_BRTimpacts_Executive_Summary_26_Nov_2013.pdf&sa=U&ei=cHRTU9KdLaTG2wXT6YDgBw&ved=0CCAQFjAB&usg=AFQjCNHBMa98Kpz-x-MPkgLw6zczTDmNQ

*Busway / BRT year commencement

New cities

Cities are unique and technologies should be tailored

VIENNA

Area: 414.6 km² Population: 1.8 million

MUNICH

Area: 310.4 km² Population: 1.4 million

COPENHAGEN

Area: 86.25 km² Population: 570.000

SIEMENS

Cities are unique in emissions and its root causes

SIEMENS

Step 1: Develop a baseline with over 300 data points

General

5 data points

Population City population, density and growth

Emission targets Targets for CO₂, NO₂ and PM₁₀

Energy

50+ data points

Consumption City's annual energy consumption from electricity, heating and cooling.

Source mix

City's consumption source mix for electricity, heating and cooling.

Grid losses

City`s transmission and distribution losses per KW generated power.

Transport

120+ data points

Passenger

Annual passenger kilometer travelled inside the city borders and the split between travel modes.

Freight

Ton kilometers of goods transported within the city borders annually, with split between road and rail.

Public transport service

Length of network, number of vehicles and capacity utilization for passenger transport modes.

Vehicles and fuel source

Private vehicles, taxis and trucks fleet distribution.

Roads and infrastructure Road network, traffic management and streetlights

Buildings

80+* data points

Floor space

City's total floor space, per building category.

Electricity usage

The share of electricity split between lighting, ventilation appliances, per building category.

Building envelope

The share of losses from heating and cooling building space, per building category.

*per building category:

Residential, non-residential

Step 1: GHG Emissions Baseline of a City

SIEMENS

Step 2: Choose from over 70 technologies

Step 2: Choose from Building Levers

SIEMENS

Commercial buildings 17 levers

Commercial Wall Insulation

Commercial Double/Triple Glazing

Commercial Efficient Lighting

Demand Oriented Lighting

Building Efficiency Monitoring

Building Performance Optimization

Demand Controlled Ventilation

Heat Recovery

Commercial Building Envelope

Remote Monitoring

Efficient Motors & Drives

Room Automation, HVAC

Room Automation, HVAC & Lighting

Room Automation, HVAC & Lighting + B

Building Automation, BACS C

Building Automation, BACS B

Building Automation, BACS A

Residential buildings 6 levers

Residential Wall Insulation

Residential Double/Triple Glazing

Residential Building Envelope

Residential Efficient Lighting

Home Energy Monitoring

Home Automation

Step 2: Choose from Transportation Levers

Transport 38 levers

Metro: New Vehicles	Freight Tram		Demand Oriented Street Lighting	
Metro: New Line	Freight Rail-Electrification		LED Street Lighting	
Metro: Reduced Headway	BRT Electrification Switch to electric vehicles		Smart Street Lighting	
Metro: Automated Train Operation	GNG Bus	GNG Car	Intelligent Traffic Light Management	
Metro: Regenerative Braking	E-Bus	E-Car	Intermodal Traffic Management	
Regional Train: Automated Train Operati	Hybrid Electric Bus	Hydrogen Car	Low Emission Zone (Truck)	
Tram: New Line	E-Taxi	Plug-in Hybrid Car	Eco Driving Training	
Tram: New Vehicles	E-BRT New Line	Hybrid Car	Urban Bike Sharing	
Tram: Automated Train Operation	E-Ticketing	E-Car Sharing	Cycling Highway	
Tram: Regenerative Braking	E-Highways		Occupancy Dependent Tolling	

City Tolling

Step 2: Choose from Energy Levers

SIEMENS

Photovoltaic

Wind Power Generation

Combined Cycle Gas Turbine

Combined Heat and Power

Network Optimization

Smart Grid for Monitoring and Automation

Power System Automation & Optimized Network

Smart Metering

On Shore Power Supply in Harbors

Impact of replacing 20% of car fleet with electric cars

Impact of replacing 20% of car fleet with electric cars

Modal share

SIEMENS

Passenger Transportation

Annual passenger kilometer travelled inside the city borders

Car fleet

Composition of vehicle fleets by fuel source.

Electricity mix (powering the electrical car)

SIEMENS

Step 3: Results: Technology impacts

SIEMENS

Step 3: Results: Technology impacts (example)

SIEMENS

Planning through KPIs rather than solutions

In order to improve a city's KPIs

Cities are unique in targets

SIEMENS

Europe GHG emissions reduction targets		Americas GHG emissions reduction targets		Asia GHG emissions reduction targets		
Copenhagen	100% by 2025	Seattle	100% by 2050	Seoul	40% by 2030	
Stockholm	100% by 2050	Portland	80% by 2050	Tokyo	25% by 2020	
Oslo	95% by 2030	Washington DC	80% by 2050	Wuhan	20% by 2015	
Helsinki	92% by 2050	Houston	36% by 2016			
London	60% by 2025	Los Angeles	35% by 2030	Australia		
Berlin	40% by 2020	Vancouver	33% by 2020	GHG emissions reduction targets		
Amsterdam	40% by 2025	Buenos Aires	33% by 2030	Melbourne	100% by 2020	
		São Paulo	30% by 2012	Adelaide	100% by 2020	
		New York	30% by 2030	Sydney	70% by 2030	
		San Francisco	25% by 2017	Africo		
		Boston	25% by 2020	GHG emissions reduction targets		
		Santiago de Chile	20% by 2020	Johannesburg	30% by 2025	

Case study: Copenhagen

SIEMENS

Copenhagen

How can the city incentivise their private sector?

Case study: Copenhagen

Case study: Mapping Vienna's scenarios

SIEMENS

Vienna First **Technologies implemented** Increased CHP contribution **Residential wall insulation Residential double/triple glazing Commercial wall insulation** Commercial double/triple glazing LED street lighting **Metro ATO CNG** cars Hybrid electric vehicles Intermodal traffic management

© Siemens AG 2016 All rights reserved.

Vienna Accelerated Technologies fit to Vienna's strategy Photovoltaic power generation **Residential efficient lighting Residential home energy monitoring Commercial efficient lighting Commercial demand oriented lighting** Commercial building efficiency monitor Commercial building performance optimization **Demand controlled ventilation** Metro – new line Urban bike sharing Plug in hybrid electric car

Electric bus

Intelligent traffic light management

Vienna Experimental

Additional technologies to be implementedResidential home automationCommercial heat recoveryHybrid electric busTrain - ATOElectric carsElectric taxisDemand oriented street lightingElectric car sharing

Case study: Mapping Vienna's cost efficiencies

SIFMENS

Jobs creation

KG CO, eq./€ (Lifespan) © Siemens AG 2016 All rights reserved.

Planning through KPIs rather than solutions based on the city's individual baseline

The CyPT path

The CyPT builds a unique city baseline based on your city data.

The CyPT path

The CyPT builds a unique city baseline based on your city data.

Team of city experts collaborate to determine the most appropriate technologies for achieving targets.

© Siemens AG 2016 All rights reserved.

The CyPT path

The CyPT builds a unique city baseline based on your city data.

Team of city experts collaborate to determine the most appropriate technologies for achieving targets.

Results calculate a cost-benefit analysis of the environmental and economic impact of technologies.

The CyPT outcomes (KPIs)

Contact information

Katrin Müller

Siemens AG Siemensdamm 50 13629 Berlin, Germany

Tel.: +49 30 386-24807 Fax: +49 30 386-26555 Mobil: +49 173 4716294

katrin.km.mueller@siemens.com

Savvas Verdis

Siemens plc CD SO CY-UD 1 Siemens Brothers Way London E16 1GB

Tel.: +44 2070 556439 Mobil: +44 7808 824664

savvas.verdis@siemens.com