
Li, Y.Z.; Yuan, J.Y.; Liu, X.G. Ecological risk prediction based on land use 
simulation under multiple scenarios  

 

 
57th ISOCARP World Planning Congress 

8-11 November 2021 | Doha, Qatar 

Research Paper  

 

Ecological risk prediction based on land use 
simulation under multiple scenarios 

A case study of urban agglomeration in central Zhejiang, China 

Yuze LI, School of Architecture, Harbin Institute of Technology; Key Laboratory of Cold Region Urban and 
Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information 

Technology, China 

Jingyuan YUAN, School of Architecture, Harbin Institute of Technology; Key Laboratory of Cold Region 
Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and 

Information Technology, China 

Xiaoguang LIU, School of Architecture, Harbin Institute of Technology; Key Laboratory of Cold Region 
Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and 

Information Technology, China 

 

Abstract 

Rapid urban expansion and climate change significantly affect the land-use structure and regional 
landscape pattern, imparting serious risks to social development, economy, and environment. 
Ecological risk prediction is a prerequisite for the successful management of resources and the 
environment to achieve sustainable development. However, ecological risk research lacks suitable 
methods to predict the ecological risk index and its spatial distribution. Taking the central Zhejiang 
urban agglomeration, in China, as an example, and drawing from land-use data in 2000 and 2020, 
this study applies the future land use simulation (FLUS) model to predict the pattern of land use in 
2040 under three scenarios: natural development, economic growth, and ecological development. 
The landscape disturbance and landscape vulnerability indices, measured using the Fragstats 
software, were applied to calculate the ecological risk index and map its spatial distribution. The 
results show that, by 2040, the overall landscape ecological risk in the study area will decline under 
all three scenarios. The largest spatial difference in land-use-induced ecological risk was that under 
the ecological development scenario; the smallest one was that under the scenario of natural 
development, adhering to the current development goals. The degree of fragmentation had a 
significant effect on ecological risk. By simulating the impact of land-use change on ecological risk 
from 2000 to 2040, this study demonstrates that the land-use change simulation model can predict 
the change in ecological risk under different spatiotemporal conditions. These predictions provide 
an important reference for planning and policy adjustments. 
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1. Introduction 

With social development, rapid population growth, and the acceleration of urbanization and 

industrialization, land resources fail to satisfy social demand, and the degree of land-use change gradually 

accelerates (Peng et al., 2021). The changes in the type and spatiotemporal pattern of land use affect 

regional natural ecosystems and generate multiple ecological risks (Estoque and Murayama, 2014). 

Landscape ecological risk assessment, a method to assess the extent of interactions of landscape patterns 
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with ecological processes producing adverse effects through land-use change (Qingpu et al., 2019), is key 

to the sustainable use of urban land resources and the maintenance of regional ecological security. 

Ecological risk assessment has emerged as a natural environmental management tool that permits the 

quantitative assessment of the ecological effects of land-use change (Peng et al., 2016). Currently, there 

are two methods for landscape ecological risk assessment: risk sources and sinks, and landscape patterns 

(Xu et al., 2021). The risk sources and sinks method requires the identification of risk stressors. The entropy 

weight (Gong, 2012), exposure-response (Liu et al., 2014), and other methods, combined with remote 

sensing, are used to identify risk sources and risk receptors (Yazhou and Xiaoping, 2015). Due to the 

differences in the heterogeneity of the land surface and the intensity of natural-environmental and human 

activity interference, regional landscapes have distinct spatial patterns. The landscape pattern method can 

efficiently reflect the spatial distribution and changes in ecological impacts, thereby enabling the 

comprehensive assessment of the potential ecological risk in a region (Zhang et al., 2018). Landscape 

ecological risk has recently become an important research theme that attracts the attention of many 

scholars in China and other countries (Peng et al., 2018; Zhang et al., 2020; Peng et al., 2018). However, 

there is a lack of research on the landscape ecological risk in large cities with a high level of urban 

development, particularly in regions with a special development orientation. In addition, research on the 

simulation of landscape ecological risk and the prediction of the evolution of future land-use patterns 

under different scenarios is also lacking. 

In this study, we develop a landscape loss model to predict future landscape ecological risk under different 

scenarios of land use. The two major objectives of the study are as follows: 1) by taking the central Zhejiang 

urban agglomeration as a research area, exploring the spatiotemporal pattern of landscape ecological risks 

in rapidly developing regions; 2) identifying the planning approach suitable for the rational development 

of land resources in Zhejiang Province. The second part of the study collected data, and the third part 

explained specific methods. Finally, it provided a theoretical reference basis for optimizing the spatial 

pattern of land use, improving the ecological resilience of the landscape, and formulating policies for the 

sustainable development of the region’s land use and ecological environment. 
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2. Study area and data 

2.1. Study area 

 

Figure 1. The location map of study area. Source: Authors, 2021. 

The central Zhejiang urban agglomeration, with a land area of 15,800 km2 located in the middle of Zhejiang 

Province (119°05–120°45 E, 28°35–30°00 N), is the key economic development zone and ecological barrier 

in the region (Figure 1). It includes twelve county-level units in Jinhua, Shaoxing, Quzhou, and Lishui cities. 

The central Zhejiang urban agglomeration is a terrain of hilly basins and alluvial plains with mostly flat 

terrain units and good traffic conditions.  

2.2. Data collection  

To characterize the changes in land use between 2000 and 2020, we used the GlobeLand30 land use 

datasets at a spatial resolution of 30 m, obtained from the National Geomatics Center of China 

(http://www.globeland30.org/). We focused on the seven land-use types generated by data reclassification: 

cultivated land, forest, shrub, grassland, water, construction land, and unused land. The selected drivers of 

land-use change included terrain, climate, and socioeconomic factors. Table 1 lists the specific parameters, 

all of which were acquired from the Chinese Academy of Sciences (http://www.resdc.cn/).  

Table 1. Data declaration. 

Data type Data content Unit Data use 

Land use data Land use type / Model base input data 

Terrain factors 

elevation m Driving factor 

slope 1° Driving factor 

aspect / Driving factor 

Climate factors 
Annual mean temperature ℃ Driving factor 

Annual mean precipitation mm Driving factor 
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Socio-economic 

factors 

distance to highway m Driving factor 

distance to railway m Driving factor 

population distribution people/km2 Driving factor 

GDP distribution yuan/km2 Driving factor 

3.Methods 

3.1. Future land use scenario simulation 

The Future Land Use Scenario (FLUS) model, developed by Xiaoping Liu from the traditional meta-cellular 

automata model (Liu et al., 2017), has an enhanced ability to simulate and predict future land-use patterns. 

The model primarily comprises two parts: an artificial neural network (ANN)-based probability of 

occurrence estimation module and a self-adaptive inertia-and-competition cellular automata module. 

ANNs can simulate multiple driving factors, such as terrain, climate, and socioeconomic factors, and 

establish their relationship between different land-use types. The self-adaptive inertia-and-competition 

mechanism cellular automata module is used to deal with the uncertainty and relative complexity of 

change, to achieve a high-precision simulation of land use/land cover (LULC) change. 

The FLUS model included the following operation steps:  

a) Setting the driving factors, initial year land use data, cost matrix, and neighborhood weight, to 

simulate the land use map of the study area in 2020. The cost matrix is the rule of variation among 

the land use types, which is used to indicate whether the land use types can transform each other or 

not, without any transformation restriction in the first simulation. The neighborhood weight 

parameter is the sprawl intensity of the land type. Its threshold value ranges from 0 to 1: the closer 

the value is to 1, the stronger the sprawl ability of the land type. The total area change reflects the 

degree of outward sprawl of each land type, which is conceptually fully consistent with the 

neighborhood weight parameter. Therefore, in this study, we used Fragstats 4.2.1 to calculate the 

total area change of each LULC type in the central Zhejiang urban agglomeration between 2000 and 

2020. We then used Equation 1 to set the neighborhood weight parameters according to the 

calculation results: 

𝑋∗ =
𝑋 −𝑚ⅈ𝑛

𝑚𝑎𝑥−𝑚ⅈ𝑛
 

Equation 1. X is the total area change of each land-use type, and min and max are the minimum and 
maximum change, respectively. 

b) Verification of the model accuracy: the accuracy of the simulation results was verified using the 

Kappa and FOM coefficients. 

c) Land-use demand forecast: the Markov model was used to predict the scale of demand for each 

land-use type and to obtain the target pixel number of future land use.  

d) Resetting the cost matrix, neighborhood factors, and restricted conditions. The LULC map was 

estimated for the central Zhejiang urban agglomeration in 2040 under the natural development 

(NDS), ecological development (EDS), and economic growth scenario (EGS). The NDS refers to the 

actual change in LULC according to the current situation. The EDS takes the nature reserve as the 

constraint, reduces the conversion rate of cultivated land to construction land by 30%, reduces the 

conversion rate of other ecological land to construction land by 50%, and increases the expansion 

capacity of ecological land according to Table 3. The EGS increases the conversion rate of ecological 
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land to cultivated and construction land by 50% and increases the expansion of other land to 

construction land (Table 4). 

Table 2. Total pixel prediction for each land type 

 
cultivated 

land 
forest 

Grass 

land 
shrub water 

constructional 

land 

unused 

land 

2020 5436872 9390762 750103 157828 344341 1594408 543 

2040.NDS 4666915 9336470 743473 152760 383662 2391068 511 

2040.EDS 4664315 9626646 755148 155703 392553 2070115 513 

2040.EGS 5533483 7607477 709552 138123 383444 3292402 513 

Table 3. The cost matrix in the ecological development scenario (EDS). 

 
Cultivated 

land 
Forest 

Grass 

land 
Shrub Water 

Constructional 

land 

Unused 

land 

Cultivated land 1 1 1 1 1 1 1 

Forest 0 1 1 1 1 0 0 

Grass land 0 1 1 1 1 0 0 

Shrub 0 1 1 1 1 0 0 

Water 0 1 1 1 1 0 0 

Constructional 

land 
0 0 0 0 0 1 0 

Unused land 1 1 1 1 1 1 1 

Table 4. The cost matrix in the economic growth scenario (EGS). 

 
Cultivated 

land 
Forest 

Grass 

land 
Shrub Water 

Constructional 

land 

Unused 

land 

Cultivated land 1 1 1 1 1 1 1 

Forest 1 1 1 1 1 1 1 

Grass land 1 1 1 1 1 1 1 

Shrub 1 1 1 1 1 1 1 

Water 1 1 1 1 1 1 1 

Constructional 

land 
0 0 0 0 0 1 0 

Unused land 1 1 1 1 1 1 1 

3.2. Landscape ecological risk assessment  

Landscape ecological risk enables the quantification of the possibility and degree of negative ecological 

effects on the structure and function of the region’s ecosystem due to natural change or human 

activities(Luo et al., 2018). Based on the analysis of the land use characteristics in the study area and 
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landscape ecology and ecological risk assessment theory, we constructed a landscape ecological risk 

assessment model from the perspective of landscape patterns. The spatial distribution of ecological risk 

was visualized using ARCGIS Pro2.7. 

 

Figure 2. The ecological risk evaluation cells across urban agglomeration in central Zhejiang, China. Source: 
Authors, 2021. 

To spatialize the landscape ecological risk index (ERI), the study area was divided into a 3 × 3 km spatial 

grid, and 1939 risk evaluation cells were obtained (Figure 2). The ERI of each cell was calculated using a 

landscape loss model (Zhang et al., 2020) as follows: 

𝐸𝑅𝐼𝑘 =∑
𝐴𝑘𝑖
𝐴𝑘

𝑛

𝑖=1

× 𝑅𝑖 

Equation 2. Where ERIk is the landscape ecological risk index of the kth risk cell; Aki is the total area of the ith 
LULC type in the kth risk cell; Ak is the total area of the kth risk cell; Ri is the landscape lose index of the ith 
LULC type. 

The landscape loss index, R, was calculated from Equation 3: 

𝑅𝑖 = 𝐸𝑖 × 𝐹𝑖 

Equation 3. Where Ri is the landscape lose index of the ith lnad use type; Ei is the landscape disturbance index 
of the ith LULC type; Fi represents the landscape ecological vulnerability index of the ith land use type. 

Based on the landscape pattern characteristics of the regional ecosystems, we used the landscape 

disturbance and landscape vulnerability indices to obtain the landscape loss index. We then constructed 

an evaluation model of landscape ecological risk that reflected the risk for different LULC types under the 

influence of the external environment. And the landscape disturbance index, E, was calculated from 

Equation 4: 

𝐸𝑖 = 𝑎𝐶𝑖 + 𝑏𝑆𝑖 + 𝑐𝐷𝑖 

Equation 4. Ci reflects the changes in landscape ecological processes. Si reflects the degree of separation of 
different patches in a given landscape type. Di reflects the dominance of patches in different land use types. 
a, b and c represent the weights of Ci, Si and Di, respectively, and a + b + c = 1. 

The different LULC types of Fi were assigned as follows: unused land = 7, water = 6, shrub = 5, cultivated 

land = 4, grass land = 3, forest = 2, construction land = 1. After normalization, the vulnerability index for 

each landscape was obtained.  
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4. Results and discussion 

4.1. Spatiotemporal characteristics of land use changes 

 

Figure 3. The land use map under different periods. Source: Authors, 2021. 

Figure 3 shows the spatial distribution maps of LULC from 2000 to 2020 and the simulation of land use in 

the central Zhejiang urban agglomeration in 2040. Cultivated land and forests covered most of the study 

area during the 2000-2040 study period. Construction land was the most variable land-use type from 2000 

to 2020, and its distribution expanded from the center of the study region. The spatial pattern analysis 

identified the structures of Jinhua and Yiwu as the core region. In the NDS, by 2040, the area of construction 

land and watershed had increased, and that of ecological land and cultivated land had slowly decreased 

compared with 2020. In the EDS, the area of all types of ecological land increased significantly, the area of 

construction land increased slowly, and the area of cultivated land decreased. In the EGS, the area of 

cultivated and construction land increased, and that of forest land decreased significantly. 

4.2. Landscape pattern and landscape loss index 

The landscape index in 2040 for each land-use scenario (Table 6) was obtained through Fragstats 4.2.1 and 

the statistical analysis function of Excel 2019. From 2000 to 2040, the disturbance index of ecological land 

decreased. From 2020 to 2040, the landscape ecological risk index (ERI) decreased by 6.6% under the NDS, 

5.6% under the EDS, and 6.3% under the EGS. The overall analysis revealed that, by 2040, the ERI will 

decrease. The ecological risk decreases the most under the NDS. Table 6 shows that, among the seven land-

use types, the contribution of the ERI was the largest for cultivated land and forest and the smallest for 

unused land. This indicates that the occupation and fragmentation of cultivated land and forest have the 

greatest potential impact on the ecological environment and socioeconomic development of the central 

Zhejiang urban agglomeration. The degree of landscape loss under the three scenarios was EGS > NDS > 

EDS. The maximum landscape loss under the EGS was due to the significant increase in forest separation 

and fragmentation. Under the EGS, the spatial distribution characteristics changed from a high-lumpiness, 

centralized distribution to a random, scattered distribution. When the EGS was disturbed by the external 

environment, the ecological loss was greater than that in the other scenarios. The landscape ecological risk 
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under the three scenarios was EDS > EGS > NDS. Although the ecological land area increased under the EDS, 

the patches of this area were difficult to expand, and fragmentation was extremely high due to the 

constraint of the city clusters in central Zhejiang. These conditions led to an increase in ecological risk under 

the EDS. 

Table 5. Indexes of landscape patterns of urban agglomeration in central Zhejiang from 2000 to 2040. 

Landscape Type Time Disturbance 

index (Ei) 

Vulnerability 

index (Fi) 

Lose 

index 

ERI Contribution 

rate 

Cultivated land 2020 0.5988 0.1429 0.0855 0.026311 45.06% 

2040.NDS 0.5763 0.1429 0.0823 0.021739 39.88% 

2040.EDS 0.5742 0.1429 0.0820 0.021686 39.33% 

2040.EGS 0.5979 0.1429 0.0854 0.026742 48.89% 

Forest 2020 0.6794 0.0714 0.0485 0.025786 44.16% 

2040.NDS 0.6754 0.0714 0.0482 0.025484 46.75% 

2040.EDS 0.6789 0.0714 0.0485 0.026414 47.91% 

2040.EGS 0.6422 0.0714 0.0459 0.019768 36.14% 

Grass land 2020 0.4598 0.1071 0.0493 0.00209 3.58% 

2040.NDS 0.4595 0.1071 0.0492 0.002071 3.80% 

2040.EDS 0.4570 0.1071 0.0490 0.002092 3.79% 

2040.EGS 0.4580 0.1071 0.0491 0.001970 3.60% 

Shrub 2020 0.4365 0.1786 0.0779 0.000696 1.19% 

2040.NDS 0.4363 0.1786 0.0779 0.000673 1.24% 

2040.EDS 0.4365 0.1786 0.0779 0.000687 1.25% 

2040.EGS 0.4358 0.1786 0.0778 0.000608 1.11% 

Water 2020 0.4571 0.2143 0.098 0.001908 3.27% 

2040.NDS 0.4554 0.2143 0.0976 0.002110 3.87% 

2040.EDS 0.4547 0.2143 0.0974 0.002164 3.93% 

2040.EGS 0.4572 0.2143 0.0980 0.002126 3.89% 

Constructional 

land 

2020 0.4943 0.0357 0.0177 0.001592 2.73% 

2040.NDS 0.5042 0.0357 0.0180 0.002436 4.47% 

2040.EDS 0.4998 0.0357 0.0178 0.002091 3.79% 

2040.EGS 0.5230 0.0357 0.0187 0.003479 6.36% 

Unused land 2020 0.4593 0.25 0.1148 0.000004 0.01% 

2040.NDS 0.4577 0.2500 0.1144 0.000003 0.01% 

2040.EDS 0.4573 0.2500 0.1143 0.000003 0.01% 

2040.EGS 0.4555 0.2500 0.1139 0.000003 0.01% 
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4.3. Spatiotemporal variations of landscape ecological risk 

Using the natural discontinuity grading method, the calculated landscape ecological risk index in the central 

Zhejiang urban agglomeration was divided into five grades: lowest-risk (ERI ≤ 0.0496), lower-risk (0.0496 

< ERI ≤ 0.0596), middle-risk (0.0596 < ERI ≤ 0.0636), higher-risk (0.0636 < ERI ≤ 0.0736), and highest-

risk (ERI > 0.0736) areas. The ordinary Kriging interpolation method was applied to obtain the spatial 

distribution of ecological risk in the central Zhejiang urban agglomeration using the ArcGIS pro2.7 platform. 

The spatial distribution of the ERI is shown in Figure 4. From 2000 to 2040, the ERI decreased.  

The study region has recently received increased investment in urban infrastructure and environmental 

management. The development of services and advanced manufacturing and the optimization of industrial 

structures for economic growth have been accompanied by improved environmental management. In 

terms of the spatial distribution of ecological risk, the highest-risk and higher-risk areas have gradually 

shifted to the edge of the central Zhejiang urban agglomeration, shrank into smaller areas, and continued 

to decline. Among the three scenarios, the EGS not only had the largest areas of the lowest risk grade but 

also an overall higher risk grade. The NDS, which followed the current development goals, resulted in a 

relatively acceptable ecological risk compared with the other two scenarios. 

 

Figure 4. The spatial distribution of landscape ecological risk under different periods. Source: Authors, 2021. 

Figure 5 shows the total area of each grade of ecological risk in the central Zhejiang urban agglomeration 

in 2000, 2020, and 2040 according to each scenario. The areas of lowest- and lower-risk generally expanded 

from 2000 to 2040, whereas those of the highest and higher risk decreased. Among the three scenarios, 

the EGS had the highest proportion of highest- and higher-risk areas (2.2% and 11.9%, respectively). The 

EDS had the highest proportion of lower-risk areas (48.7%) and a proportion of lowest-risk areas lower than 

that under the NDS (30.9 and 35.6%, respectively). 
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Figure 5. The area of ecological risk levels in each scenario 

5. Conclusion 

This study simulated the future landscape ecological risk in 2040, assessed the ERI, and discussed the 

landscape ecological risk responses to future land-use patterns in the central Zhejiang urban agglomeration 

under three scenarios of land use (natural development, ecological development, economic growth).  

The growth rate of construction land was the fastest during 2000–2020. Cultivated land and forest had the 

greatest impact on the loss index, which affected the landscape ecological risk. The overall landscape 

ecological risk in the study area declined under all three scenarios. The lowest ecological loss and the 

greatest decrease in ecological risk were under the natural development scenario. This phenomenon 

indicated that, in the urban agglomeration of central Zhejiang, development consistent with the current 

policy that pays equal attention to the ecology and economy is the optimal route. 

Land-use change in the study area led to the changes in the landscape pattern. The area of ecological land 

can be effectively protected by restricting the expansion of construction land under an ecological 

development scenario. However, the increase in the total number of patches and the deepening of 

fragmentation would lead to a higher ERI. In the ecological development scenario, ecological land increased; 

however, the ecological risk also increased due to the high degree of fragmentation. This indicates that the 

cost of ecological protection in the study area is extremely high, as the study area is vulnerable to 

interference from the external environment. Therefore, future development should pay attention to the 

connectivity of ecological land. 

Based on these results, the rational allocation of land resources is particularly important. The blind pursuit 

of both ecological areas and economic development is not scientifically justified. The central region of the 

urban agglomeration should adhere to the plan of developing ecological land and construction land in 

patches, forming a focused, pearl-like landscape that will drive the development of western Zhejiang 

Province. Marginal areas such as Longyou, Wuyi, Zhuji, and Jinyun are the key areas of ecological risk 

control in the future. 

The ecological risk value obtained in this study is based on the landscape pattern index as an indicator of 

the relative landscape ecological risk in the central Zhejiang urban agglomeration. The scenario simulation 

is flexible: the use of multi-temporal landscape structure data combined with spatial statistics can quantify 

the relative landscape ecological risk in the study area and reveal the spatial distribution and dynamic 

change of future ecological risk. These insights can guide urban planning strategies. 
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